3,090 research outputs found

    Novel Cascaded Ultra Bright Pulsed Source of Polarization Entangled Photons

    Full text link
    A new ultra bright pulsed source of polarization entangled photons has been realized using type-II phase matching in spontaneous parametric down conversion process in two cascaded crystals. The optical axes of the crystals are aligned in such a way that the extraordinarily (ordinarily) polarized cone from one crystal overlaps with the ordinarily (extraordinarily) polarized cone from the second crystal. This spatial overlapping removes the association between the polarization and the output angle of the photons that exist in a single type-II down conversion process. Hence, entanglement of photons originating from any point on the output cones is possible if a suitable optical delay line is used. This delay line is particularly simple and easy to implement.Comment: 8 pages 8 figure

    Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission

    Full text link
    We present results of a bright polarization-entangled photon source operating at 1552 nm via type-II collinear degenerate spontaneous parametric down-conversion in a periodically poled potassium titanyl phosphate crystal. We report a conservative inferred pair generation rate of 123,000 pairs/s/mW into collection modes. Minimization of spectral and spatial entanglement was achieved by group velocity matching the pump, signal and idler modes and through properly focusing the pump beam. By utilizing a pair of calcite beam displacers, we are able to overlap photons from adjacent down-conversion processes to obtain polarization-entanglement visibility of 94.7 +/- 1.1% with accidentals subtracted.Comment: 4 pages, 7 color figures. Revised manuscript includes the following changes: corrected pair generation rate from 44,000/s/mW pump to 123,000/s/mW pump; replaced Fig. 1b to enhance clarity; minor alterations to the title, abstract and introduction; grammatical correction

    Search Interfaces for Mathematicians

    Full text link
    Access to mathematical knowledge has changed dramatically in recent years, therefore changing mathematical search practices. Our aim with this study is to scrutinize professional mathematicians' search behavior. With this understanding we want to be able to reason why mathematicians use which tool for what search problem in what phase of the search process. To gain these insights we conducted 24 repertory grid interviews with mathematically inclined people (ranging from senior professional mathematicians to non-mathematicians). From the interview data we elicited patterns for the user group "mathematicians" that can be applied when understanding design issues or creating new designs for mathematical search interfaces.Comment: conference article "CICM'14: International Conference on Computer Mathematics 2014", DML-Track: Digital Math Libraries 17 page

    Generation of Pure-State Single-Photon Wavepackets by Conditional Preparation Based on Spontaneous Parametric Downconversion

    Get PDF
    We study the conditional preparation of single photons based on parametric downconversion, where the detection of one photon from a given pair heralds the existence of a single photon in the conjugate mode. We derive conditions on the modal characteristics of the photon pairs, which ensure that the conditionally prepared single photons are quantum-mechanically pure. We propose specific experimental techniques that yield photon pairs ideally suited for single-photon conditional preparation.Comment: 14 pages, 6 figure

    Reliability of the beamsplitter based Bell-state measurement

    Full text link
    A linear 50/50 beamsplitter, together with a coincidence measurement, has been widely used in quantum optical experiments, such as teleportation, dense coding, etc., for interferometrically distinguishing, measuring, or projecting onto one of the four two-photon polarization Bell-states ∣ψ(−)>|\psi^{(-)}>. In this paper, we demonstrate that the coincidence measurement at the output of a beamsplitter cannot be used as an absolute identifier of the input state ∣ψ(−)>|\psi^{(-)}> nor as an indication that the input photons have projected to the ∣ψ(−)>|\psi^{(-)}> state.Comment: 4 pages, two-colum
    • …
    corecore